A Novel Trithiadiazapentalene Derivative with Exocyclic C-N Double Bonds

By Kwo-Tsair Wei and Iain C. Paul*
(Noyes Chemical Laboratory, School of Chemical Sciences, University of Illinois, Urbana, Illinois, 61801)
and Roger J. S. Beer* and Alan Naylor
(Robert Robinson Laboratories, University of Liverpool, Liverpool, L69 3BX)

Summary The structure of 3,4-ethano-2,3,4,5-tetrahydro-2,5-bisphenylimino-1,6,6a, S $^{\text {IV }}$-trithia-3,4-diazapentalene (I) has been confirmed by X-ray crystallography.

The structure (I), assigned ${ }^{1}$ to the yellow product obtained by treatment of the isothiouronium salt (II; $n=1$) with aqueous sodium hydrogen carbonate and phenyl isothiocyanate, has been confirmed by X-ray crystallography.

Crystal data: $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{~S}_{3}, M=365 \cdot 5$, triclinic, $a=8 \cdot 184-$ (2), $b=19 \cdot 458(4), \quad c=12 \cdot 040(3) \AA, \alpha=109 \cdot 68(4), \beta=$ $72 \cdot 85(5)$, and $\gamma=107 \cdot 66(4)^{\circ}, V=1680 \AA^{3}, Z=4, D_{\mathrm{c}}=$ $1.445 \mathrm{~g} \mathrm{~cm}^{-3}$. There are no systematic absences. Space group $P \overline{1}$ (confirmed by the results of the analysis). The

(I)

(IV)

(II)

(III)

(V)

(V) 1

(III)
structure was solved by a combination of symbolic addition and heavy-atom methods and has been refined to an R factor of 0.058 on 3693 non-zero reflections collected on a Picker FACS-1 diffractometer ($\mathrm{Cu}-K_{\alpha}$).

The bond-lengths in the essentially planar central portions of the two crystallographically-independent molecules are shown in the Figure. The agreement in dimen-
sions between the two molecules is quite close. The S-S lengths lie in the range typical of $6 a$-thiathiophthens, ${ }^{2}$ but the C-S distances are significantly different from those normally found in thiathiophthens, e.g. compound (III), ${ }^{3}$ and related systems, such as the 3,4-diaza compound (IV). ${ }^{4}$ In (I), the central $\mathrm{C}-\mathrm{S}$ bonds $[1 \cdot 689(5)$ and $1 \cdot 697(5)]$ are shorter than the outer ones [1.737(5), 1.741(6), 1.732(6), and $1.735(5) \AA]$.

The phenyl groups in compound (I) are twisted out of the main plane of the molecule by varying amounts ($37-76^{\circ}$). Inspection of all the $\mathrm{C}-\mathrm{N}$ bond lengths suggests that the molecule should be represented as in structure (V), with the exocyclic $\mathrm{C}-\mathrm{N}$ links as pure double bonds, ${ }^{5}$ and with relatively little π-overlap between $\mathrm{C}(2)$ and $\mathrm{N}(3)$, and $\mathrm{N}(4)$ and $C(5)$. Viewed in this light, the new structure may be related to the electron-rich three-centre system found in the triselenocyanate anion (VI). ${ }^{6}$

Figure. Bond lengths (\AA) in the two independent molecules of (I).

Treatment of the isothiouronium salt (II; $n=2$) with sodium hydrogen carbonate and phenyl isothiocyanate yields a colourless product, which, from its n.m.r. and i.r. spectra, is formulated as the tricyclic dithione (VII), a derivative of 2,3,4,5-tetrahydro-6a-thia-1,3,4,6-tetra-azapentalene.
(Received, 3rd February 1975; Com. 121.)
${ }^{1}$ R. J. S. Beer and A. Naylor, Tetrahedron Letters, 1973, 2989.
${ }^{2}$ R. J. S. Beer in 'Organic Compounds of Sulphur, Selenium, and Tellurium,' Chemical Society Specialist Periodical Report, Volume 2, 1973, 510; A. F. Cameron in 'Molecular Structure by Diffraction Methods,' Chemical Society Specialist Periodical Report, Volume 1, 1973, pp. 261-281.
${ }^{3}$ P. L. Johnson and I. C. Paul, Chem. Comm., 1969, 1014; P. L. Johnson, E. C. Llanguno, and I. C. Paul, to be published.
4 A. Hordvik and P. Oftedal, J.C.S. Chem. Comm., 1972, 543.
${ }^{5}$ J. D. McCullough, Jr., I. C. Paul, and D. Y. Curtin, J. Amer. Chem. Soc., 1972, 94, 883.
${ }^{5}$ S. Hauge and J. Sletten, Acta Chem. Scand., 1971, 25, 3094, 3103.

